

Title: Real-world effectiveness of molnupiravir, nirmatrelvirritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: A retrospective cohort study

Evans, A., Qi, C., Adebayo, J.O., Underwood, J., Coulson, J., Bailey, R., Lyons, R., Edwards, A., Cooper, A., John, G. and Akbari, A. (2023) 'Real-world effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: A retrospective cohort study', *Journal of Infection*, 86(4), pp. 352-360.

Link to repository record:

https://repository.dhcw.nhs.wales/id/eprint/20

Additional information:

Article as accepted for publication in *Journal of Infection* published by Elsevier available at: https://doi.org/10.1016/j.jinf.2023.02.012

Version note:

This is an Open Access document downloaded from the Digital Health and Care Wales Research and Knowledge Repository: https://repository.dhcw.nhs.wales/. Copyright and moral rights remain with the authors and/or copyright owners.

This version is being made available in accordance with publisher policies.

<u>Please cite the published version</u>. The version presented here may differ from the published version or from the version of record. If you wish to cite the following item, it is advised to consult the publisher's version. Access to the publisher version can be found via the URL listed above.

For more information about this article, or the repository, please contact: elibrary@wales.nhs.uk

Digital Health and Care Wales Research and Knowledge Repository https://repository.dhcw.nhs.wales/ Real-world effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: a retrospective cohort study

Authors

Andrew Evans, Chief Pharmaceutical Officer, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff CF10 3NQ (corresponding author) Andrew. Evans@gov.wales

Cathy Qi, Research Officer, Health Data Research UK Wales and Northern Ireland, Administrative Data Research Wales, Swansea University Medical School, Singleton Park Swansea SA2 8PP Cathy.Qi@swansea.ac.uk

Lolu Adebayo, Research Officer, Health Data Research UK Wales and Northern Ireland, Administrative Data Research Wales, Swansea University Medical School, Singleton Park Swansea SA2 8PP J.O.Adebayo@swansea.ac.uk

Jonathan Underwood, Clinical Academic Research Partnership Fellow, School of Medicine, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN underwoodj7@cardiff.ac.uk

James Coulson, Clinical Reader, School of Medicine, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN Coulsonjm@cardiff.ac.uk

Rowena Bailey, Senior Research Officer, Swansea University Medical School, Singleton Park Swansea SA2 8PP <u>r.bailey@swansea.ac.uk</u>

Gareth John, Information Systems Development and Design Lead, Information Services Directorate, Digital Health and Care Wales, Tŷ Glan-yr-Afon, 21 Cowbridge Road East, Cardiff CF11 9AD Gareth.John@wales.nhs.uk

Adrian Edwards, Professor of General Practice, Division of Population Medicine, Director, PRIME Centre Wales and Wales COVID-19 Evidence Centre. Division of Population Medicine, Cardiff University, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS Edwardsag@cardiff.ac.uk

Alison Cooper, Associate Academic Fellow, Wales Covid-19 Evidence Centre. Division of Population Medicine, Cardiff University, Neuadd Meirionnydd, Heath Park, Cardiff, CF14 4YS Coopera8@cardiff.ac.uk

Ronan Lyons, Clinical Professor of Public Health, Health Data Science, Swansea University Medical School, Singleton Park Swansea SA2 8PP <u>r.a.lyons@swansea.ac.uk</u>

Ashley Akbari, Senior Research Manager, Swansea University Medical School, Singleton Park Swansea SA2 8PP a.akbari@swansea.ac.uk

Abstract

Objective

To compare the effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab with no treatment in preventing hospital admission or death in higher-risk patients infected with SARS-CoV-2 in the community.

Design

Retrospective cohort study of non-hospitalised adult patients with COVID-19 using the Secure Anonymised Information Linkage (SAIL) databank.

Setting

A real-world cohort study was conducted within the SAIL databank (a secure trusted research environment containing anonymised, individual, population-scale electronic health record (EHR) data) in Wales.

Participants

Adult patients with COVID-19 in the community at higher risk of hospitalisation and death testing positive for SARS-CoV-2 between 16 December 2021 and 22 April 2022.

<u>Interventions</u>

Molnupiravir, nirmatrelvir-ritonavir, and sotrovimab given in the community by local health boards and the National Antiviral Service in Wales.

Main outcome measures

All cause admission to hospital or death within 28 days of positive test for SARS-CoV-2.

Results

Between 16 December 2021 and 22 April 2022, 7103 higher-risk patients were eligible for inclusion in the study. Of these, 2040 received treatment with molnupiravir (359, 17.6%), nirmatrelvir-ritonavir (602, 29.5%), or sotrovimab (1079, 52.9%). Patients in the treatment group were younger (mean age 53 vs 58 years), had fewer comorbidities, and a higher proportion had received four or more doses of COVID-19 vaccine (36.3% vs 17.6%). Within 28 days of positive test, 628 (9.0%) patients were admitted to hospital or died (84 treated and 544 untreated). Risk of hospitalisation or death was analysed using a Cox proportional hazard model with treatment status (treated/untreated) as a time-dependent covariate and adjusted for age, sex, number of comorbidities, Welsh Index of Multiple Deprivation, and vaccination status. The primary analysis indicated a lower risk of hospitalisation or death at any point within 28 days in treated participants compared to those not receiving treatment. The estimated hazard rate was 35% (95% CI: 18-49%) lower in treated than untreated participants after adjusting for confounders. In secondary analysis there was no indication of the superiority of one treatment over another and no evidence of a reduction in risk of hospitalisation or death within 28 days for patients with no or only one comorbidity. In subgroup analysis of the 1079 patients treated with sotrovimab the event rates before and on or after 20th February 2022, when omicron BA.1 and omicron BA.2 were the dominant

subvariants in Wales respectively, were similar (5.0% vs 4.9%) with no significant difference in the hazard ratios for sotrovimab between the time periods.

Conclusions

In higher-risk adult patients in the community with COVID-19, those who received treatment with molnupiravir, nirmatrelvir-ritonavir, or sotrovimab were at lower risk of hospitalisation or death than those not receiving treatment.

Introduction

The development of novel therapeutic agents for the treatment of SARS-CoV-2 infection has been a priority during the COVID-19 pandemic. In early 2021, the UK Government established an antiviral task force with the objective of identifying and deploying innovative COVID-19 treatments which could be taken at home to reduce disease transmission and speed up individuals' recovery. Later in 2021, the Medicines and Healthcare products Regulatory Agency (MHRA) granted conditional marketing authorisations for three antiviral medicines, remdesivir, molnupiravir, and nirmatrelvir-ritonavir, and the two neutralising monoclonal antibody (nMAb) treatments casirivimab and imdevimab, and sotrovimab, for the treatment of mild to moderate COVID-19 in individuals with one or more risk factors for severe disease.

Whilst antiviral and nMAb therapies have been shown to reduce the risk of progression to severe disease in clinical trials, licensing studies were carried out before the deployment of COVID-19 vaccination programmes.²⁻⁶ Furthermore the emergence of new SARS-CoV-2 variants shown in vitro to have the ability to evade neutralisation by monoclonal antibodies,⁷ has cast doubts on the sustained effectiveness of these treatments with international medicines regulators and the manufacturer restricting the use of casirivimab and imdevimab,^{8,9} and the World Health Organization (WHO) now strongly recommending against the use of sotrovimab in patients with non-severe COVID-19.¹⁰

There is therefore considerable uncertainty as to whether the benefits of treatments observed in clinical trial are realised in the real world in highly vaccinated populations, and where newer variants dominate those that resulted in infection amongst trial participants. To address these concerns, in the UK the deployment of antiviral and nMAb treatments to non-hospitalised patients testing positive for COVID-19 was restricted to those in tightly defined cohorts whose immune systems mean they remain at higher-risk of serious illness, despite vaccination.¹¹

The UK deployment of COVID-19 treatments to non-hospitalised higher-risk patients began on 16th December 2021. A clinical access policy continues to support treatment of higher-risk patients with antiviral medicines and in limited circumstances, sotrovimab¹² and over 96000 people in England and Wales have subsequently received treatment.^{13,14} Further real-world evidence of the effectiveness of the UK deployment approach is urgently needed.

In this retrospective cohort study, we sought to compare the effectiveness of sotrovimab, molnupiravir, and nirmatrelvir-ritonavir in preventing hospital admission and death in higher-risk patients (Figure 1) with COVID-19 in Wales during the first five months of deployment in the UK, using anonymised, individual, population-scale electronic health record (EHR) data in the Secure Anonymised Information Linkage (SAIL) Databank¹⁵⁻¹⁹ trusted research environment (TRE), accounting for age, comorbidity, socioeconomic deprivation, and vaccination status. We also conducted a subgroup analysis of patients treated with sotrovimab before and following the emergence of the omicron BA.2 variant in Wales.²⁰

The following groups may be eligible for COVID-19 treatments in the UK including people who have:

- Chromosomal disorders affecting the immune system, including Down's syndrome
- certain types of cancer or have received treatment for certain types of cancer
- sickle cell disease
- certain conditions affecting their blood
- chronic kidney disease (CKD) stage 4 or 5
- severe liver disease
- had an organ transplant
- certain autoimmune or inflammatory conditions (such as rheumatoid arthritis or inflammatory bowel disease)
- HIV or AIDS who have a weakened immune system
- inherited or acquired conditions affecting their immune system

Figure 1: Higher-risk patients eligible for COVID-19 treatments

Methods

Study Design and population

Retrospective cohort study in Wales of non-hospitalised adult patients with COVID-19.

To be eligible for inclusion in the study, participants needed to have a positive SARS-CoV-2 polymerase chain reaction (PCR) or lateral flow device (LFD) test between 16th December 2021 and 22nd April 2022, and be included in one or more of the ten cohorts considered to be at higher-risk from COVID-19 in accordance with the UK clinical access policy, and who were eligible for treatment with sotrovimab, molnupiravir, or nirmatrelvir–ritonavir.¹¹ Participants were retrospectively followed up for 28 days following index date (the date of positive PCR or LFD test) for any cause hospitalisation or death.

Data sources and variables

Anonymised individual-level, population-scale, linked, routinely collected, electronic health record (EHR) data within the SAIL Databank were used. Eligible participants were identified by Digital Health and Care Wales (DHCW) from hospital episode data contained within the Patient Episode Database for Wales (PEDW), and primary care prescribing data, linked to PCR and LFD test results in the Welsh Laboratory Information System (WLIMS), or from opportunistic referral by clinicians. Data available included the date of positive test, participants' Lower-level Super Output Area (LSOA) of residence (administrative authority locality), and information about the clinical condition conferring eligibility for each participant.

An individual-level dataset of patients treated with antiviral and nMAb treatments was obtained from each of the Wales' seven local health boards (LHBs) and the National Antiviral Service (NAVS)²¹ and linked with the cohort of eligible people identified as described above. People hospitalised on the day of the positive test, who received treatment but who had no record of positive PCR or LFD test either in the data provided by DHCW or contained within the SAIL databank, people who received a study treatment before their index date, people hospitalised or who died before or on the index date, and anyone treated more than seven days after the most recent positive test, were excluded. Further exclusions were applied to individuals still missing key demographic information (age, sex, LSOA) or who had a non-Welsh LSOA.

Exposure

The exposure was treatment with molnupiravir, nirmatrelvir-ritonavir, or sotrovimab. Participants were either treated within seven days of a positive PCR or LFD test (days 0 to 7) or were untreated with one of the treatments under investigation, within 28 days of a positive test.

Outcomes

The primary outcome was any cause hospital admission or death (if death occurred without prior admission) within 28 days of a positive PCR or LFD test. Participants with no record of a hospital admission within 28 days were assumed to be not hospitalised, and those with no record of death were assumed to be alive.

Covariates

Participants' baseline covariates included age, sex, number of comorbidities, Charlson comorbidity index (CCI) score, clinical subgroup (categorised as immunosuppressed conditions including haematological cancers, non-haematological cancers, other high-risk conditions, or unknown), Welsh Index of Multiple Deprivation (WIMD) as quintiles, COVID-19 vaccination status (unvaccinated, one to three vaccinations, or four or more vaccinations), and type of treatment received (molnupiravir, nirmatrelvir-ritonavir, or sotrovimab).

Statistical Analysis

Kaplan-Meier graphs were used to show event-free survival during the 28-day observation period. Event-free survival was presented by demographic factors (sex, age, WIMD), clinical factors (vaccination, number of comorbidities, weighted CCI score, clinical subgroup), and treatment groups.

In the primary analysis, risk of hospitalisation or death at 28 days was analysed using a Cox proportional hazard model with treatment status (treated/untreated) as a time-dependent covariate and adjusted for age, sex, number of comorbidities, WIMD, and vaccination status. For those receiving treatment, treatment status was updated from untreated to treated the day after treatment if they remained in the risk set. Time-to-event was from index date and censored at 28 days for those without an event by day 28. The proportional hazards assumption was assessed using Schoenfeld's global test, and visual plots.

To assess the sensitivity of the primary result to possible bias we repeated the analysis not adjusting for confounders, adjusting for the CCI weighted score rather than number of comorbidities, and adjusting for the clinical subgroup instead of the number of comorbidities. We repeated the primary model without the time-dependent component comparing two fixed groups of individuals (treated and untreated) and included all individuals who received treatment (at any time point) in the treated group. Finally we performed logistic regression with all cause hospitalisation or death as the outcome comparing treated and untreated groups (with all individuals who received treatment in the treated group), and adjusting for the covariates included in the primary model. Hazard ratios (HR) were calculated with 95% confidence intervals (CIs).

Secondary analyses assessed the primary outcome by: treatment type; number of comorbidities; and before and on or after 20th February 2022.

We estimated the HR (95% CI) associated with each treatment type by fitting the primary model with treatment status categorised into molnupiravir, nirmatrelvir-ritonavir, sotrovimab, or untreated. The HR associated with being currently treated vs untreated was estimated for each comorbidity category by the addition of an interaction term between comorbidity and treatment status in the primary model. The analysis for before or on or after 20th February 2022 included a subset of participants who received sotrovimab or were untreated, and the HR (95% CI) associated with treatment with sotrovimab was estimated for each time point by addition of time point (before or on or after 20th February 2022) and an interaction term between time point and treatment status in the primary model.

All statistical analyses were conducted using R V4.1.3 and STATA 17.0 (StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC.)

Results

We identified 10825 high-risk individuals of whom 7128 tested positive between 16th December 2021 and 22nd April 2022. A further 603 individuals not identified by DHCW were identified from the LHB and NAVS treatment dataset. In total 7013 patients with a positive PCR or LFD test were considered to meet the clinical eligibility criteria for antiviral or nMAb treatment (Figure 2). Of these, 2040 (29.1%) received treatment within seven days of a positive test and were not admitted to hospital on or before receiving treatment, 32 (0.5%) were hospitalised within seven days of a positive test and received treatment on the day or after the day of admission, and 4941 (70.5%) did not receive treatment in the community within the study period.

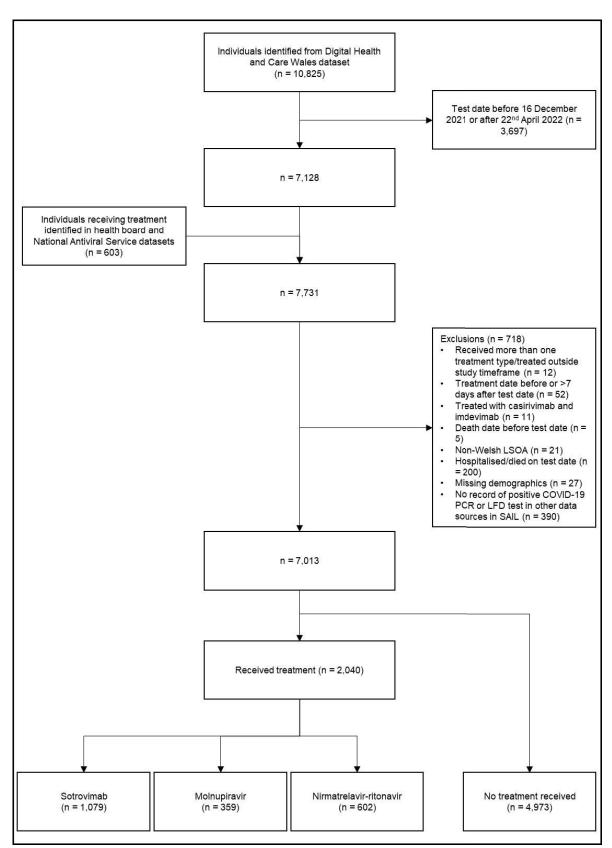


Figure 2: Study participant flowchart

The baseline characteristics of the study population are presented in Table 1. Patients in the treatment group were younger (mean age 53 vs 58 years), had fewer comorbidities, and a higher proportion had received four or more doses of COVID-19 vaccine (36.3% vs 17.6%).

Table 1: Baseline characteristics of study participants

Characteristic	Treated, $n = 2,040$	Untreated, $n = 4,973$
Sex		
Female	1,246 (61.1%)	2,666 (53.6%)
Male	794 (38.9%)	2,307 (46.4%)
Age		
Mean (SD)	53 (15)	57 (18)
Number of comorbidities		
0	940 (46.1%)	1,850 (37.2%)
1	644 (31.6%)	1,541 (31.0%)
2 and more	456 (22.4%)	1,582 (31.8%)
Charlson comorbidity index score		
0 - 10	1,522 (74.6%)	3,123 (62.8%)
11 - 20	368 (18.0%)	1,112 (22.4%)
21 and above	150 (7.4%)	738 (14.8%)
Clinical subgroup		
Immunosuppressed Conditions	968 (47.5%)	2,042 (41.1%)
Non-Haemotological Cancers	276 (13.5%)	995 (20.0%)
Other High-Risk Conditions	597 (29.3%)	1,851 (37.2%)
Unknown	199 (9.8%)	85 (1.7%)
Deprivation		
Most Deprived - 1	300 (14.7%)	971 (19.5%)
2	360 (17.6%)	1,047 (21.1%)
3	403 (19.8%)	1,007 (20.2%)
4	450 (22.1%)	950 (19.1%)
Least Deprived - 5	527 (25.8%)	998 (20.1%)
Treatment received		
Molnupiravir	359 (17.6%)	0 (0.0%)
Sotrovimab	1,079 (52.9%)	0 (0.0%)
Nirmatrelvir/Ritonavir	602 (29.5%)	0 (0.0%)
None	0 (0.0%)	4,973 (100.0%)
Number of vaccine doses		
0	37 (1.8%)	217 (4.4%)
1 - 3	1,263 (61.9%)	3,881 (78.0%)
4 and more	740 (36.3%)	875 (17.6%)
All cause hospitalisation or death within 28 days	84 (4.1%)	544 (10.9%)

Association between demographic and clinical characteristics and the primary outcome

The probability of avoiding hospital admission or death within 28 days was higher in younger age groups (aged under 60), amongst patients living in the lowest quintile of multiple deprivation (least deprived quintile), and in those who had received four or more doses of COVID-19 vaccine when compared to those receiving fewer doses. Those receiving any COVID-19 vaccinations had a lower probability of admission or death than unvaccinated patients. Notable differences were observed in event-free survival between those with

comorbidities (when measured either by the number or by the CCI score) with lesser differentiation observed between the clinical subgroups (Figure 3).

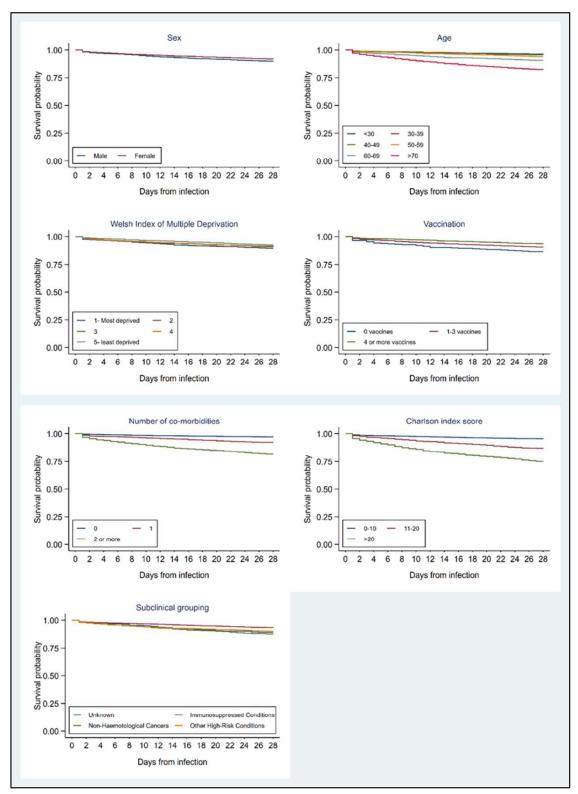


Figure 3: Kaplan-Meier charts showing association between demographic and clinical factors with event-free survival during the 28-day observation period following the date of COVID-19 infection

Treatment effectiveness for the primary outcome

In total 628 (9.0%) hospitalisations or deaths within 28 days of a positive test were observed in the study period; 84 (4.1%) in treated and 544 (10.9%) in untreated participants.

The primary analysis results indicated a lower risk of hospitalisation or death at any point within 28 days in treated participants compared to those not receiving treatment. The estimated hazard rate was 35% (95% CI: 18-49%) lower in treated than untreated participants after adjusting for confounders and 52% (95% CI: 39-62%) lower in the unadjusted analysis. The results of the primary and sensitivity analyses are shown in Table 2.

Table 2: Primary outcome and sensitivity analyses

	Treated	Untreated
Primary analysis: (adjusted for age, sex, WIMD, vacc	cination status, number of comorbidities)	
Numbers included	2,040	4,973
No. of events (%)	84 (4.1)	544 (10.9)
Hazard ratio (95% CI)	0.65 (0.51- 0.82)	
Sensitivity analysis: unadjusted		
Numbers included	2,040	4,973
No. of events (%)	84 (4.1)	544 (10.9)
Hazard ratio (95% CI)	0.48 (0.38- 0.61)	
Sensitivity analysis: (adjusted for age, sex, WIMD, v.	accination status, clinical group)	
Numbers included	2,040	4,973
No. of events (%)	84 (4.1)	544 (10.9)
Hazard ratio (95% CI)	0.61 (0.48- 0.78)	
Sensitivity analysis: (adjusted for age, sex, WIMD, v.	accination status, weighted CCI score)	
Numbers included	2,040	4,973
No. of events (%)	84 (4.1)	544 (10.9)
Hazard ratio (95% CI)	0.67 (0.53- 0.85)	
Sensitivity analysis: time-independent (adjusted for	r age, sex, WIMD, vaccination status, nui	mber of comorbidities)
Numbers included	2,072	4,941
No. of events (%)	116 (5.6)	512 (10.4)
Hazard ratio (95% CI)	0.72 (0.58- 0.88)	
Sensitivity analysis: logistic model (adjusted for ago	e, sex, WIMD, vaccination status, numbe	er of comorbidities)1
Numbers included	2,072	4,941
No. of events (%)	116 (5.6)	512 (10.4)
Log odds (95% CI)	0.70 (0.57- 0.88)	

^{1.} The treated group included 32 individuals who received treatment after hospitalisation

Secondary analyses

Of the 2040 patients receiving any treatment, 359 (17.6%) received molnupiravir, 602 (29.5%) nirmatrelvir-ritonavir, and 1,079 (52.9%) sotrovimab. The event rates were 3.9% (14/359) for molnupiravir, 2.8% (17/602) for nirmatrelvir-ritonavir, and 4.9% (53/1,079) for sotrovimab. Each treatment was found to lower the risk of hospitalisation or death when compared to no treatment. The adjusted HRs for patients treated with molnupiravir, nirmatrelvir-ritonavir, and sotrovimab were 0.49 (95%CI: 0.29-0.83), 0.59 (95%CI: 0.36-

0.97), and 0.73 (95%CI: 0.55-0.98) respectively. We found no indication of the superiority of one treatment over another.

When we examined the effect of comorbidity on treatment outcome, there was no evidence of a reduction in risk of hospitalisation or death within 28 days for patients with no or only one comorbidity. For patients with two or more comorbidities the adjusted HR was 0.45 (95%CI: 0.31-0.65) indicating a 55% reduction in hazard after treatment (Table 3).

Table 3: Secondary analysis: subgroup effect (number of comorbidities)

	Treated, $n = 2,040$	Untreated, $n = 4,973$
Numbers included (%)		
0	940 (46.1)	1,850 (37.2)
1	644 (31.6)	1,541 (31.0)
≥ 2	456 (22.4)	1,582 (31.8)
No. of events (%)		
0	22 (2.3)	58 (3.1)
1	31 (4.8)	140 (9.1)
≥ 2	31 (6.8)	346 (21.9)
Hazard ratio (95% CI)		
0	1.09 (0.67- 1.79)	
1	0.79 (0.53- 1.17)	
≥ 2	0.45 (0.31- 0.65)	

The subgroup analysis including 6,052 participants (1079 patients treated with sotrovimab and 4973 not treated) showed 461 (42.7%) treated before and 618 (57.3%) treated on or after 20th February 2022. The number of events occurring before and on or after this date were 23 and 30 respectively, and the event rates were similar (5.0% vs 4.9%). No significant difference was observed in the HRs for sotrovimab between the time periods when omicron BA.1 and omicron BA.2 were the dominant subvariants in Wales (Table 4).

Table 4: Secondary analysis: subgroup before and on or after 20th February 2022

	Treated, $n=1,079$	Untreated, $n=4,973$
Numbers included (%)		
Before	461 (42.7)	2,457(49.4)
After	618 (57.3)	2,516 (50.6)
No. of events (%)		
Before	23 (5.0)	269 (11.0)
After	30 (4.9)	275 (10.9)
Hazard ratio (95% CI)		
Before	0.76 (0.50- 1.18)	
After	0.70 (0.48- 1.03)	

The baseline characteristics of patients included in the secondary analyses are available in Supplementary Tables S1 - S3).

Discussion

In this retrospective real-world cohort study of highest-risk, non-hospitalised patients with COVID-19, prompt treatment with molnupiravir, nirmatrelvir-ritonavir, or sotrovimab was associated with significantly lower risks of all-cause hospital admission or death within 28 days of testing positive for SARS-CoV-2.

To our knowledge this is the first real-world study to compare the targeted deployment of antiviral and nMAb treatment to only patients considered to be at the very highest risk of severe disease and the effectiveness of the deployment model being used in the UK against untreated patients in similar high-risk cohorts. In the main analysis, we found untreated patients considered to be at the highest-risk continue to face a substantial risk of hospitalisation or death when they had COVID-19 and whilst not eliminated, that after controlling for a wide range of potential confounders, that risk was significantly reduced by treatment with one of molnupiravir, nirmatrelvir-ritonavir, or sotrovimab. In subgroup analysis we found no clear evidence for any one treatment over any other. Secondary analyses suggest the greatest benefits of treatment are for patients with multiple comorbidities, and that there was little change to the effectiveness of sotrovimab following the emergence of the omicron BA.2 subvariant.

Findings in context

We found people in the 10 high-risk cohorts eligible in the UK continue to face a substantial (10.9%) risk of hospitalisation or death when they have COVID-19. The reduction in hospitalisations and deaths found in this study are broadly consistent with published preomicron randomised controlled trials for sotrovimab,² molnupiravir,³ and nirmatrelvirritonavir,⁴ despite our study being carried out when omicron was the predominant variant in Wales. Similar results were observed in real-world studies of nirmatrelvir-ritonavir²² where a significant decrease in the rate of severe COVID-19 or death was observed with an adjusted HR of 0.54 (95%CI: 0.39-0.75) when omicron was the predominant variant, a preprint study of sotrovimab with a 55% relative risk (RR) reduction of hospitalisation (RR: 0.45, 95%CI: 0.41-0.49) before²³ and a study of sotrovimab with a 72% reduction in risk of hospitalisation (OR: 0.28, 95%CI: 0.11-0.71) after the emergence of omicron variants.²⁴

Our results contrast to those of the recently published 25000 participant, prospective, open-label, UK-wide, PANORAMIC trial which found only a 1% risk of all cause hospitalisation and that molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among adults over 50 years of age or over 18 with other risk factors, in the community.²⁵

The populations included in these studies have major differences to those in our analysis and included unvaccinated patients²⁻⁴ and individuals from relatively lower-risk cohorts, ²²⁻²⁵ meaning their findings are unlikely to be generalisable to the current highly targeted deployment in the UK.

Few studies have been limited to comparable higher-risk populations. Those which have studied similar cohorts including one peer-reviewed and one pre-print study exploring the UK's targeted deployment, also reported lower rates of hospital admission and death amongst those receiving treatment. Higher than the findings of our secondary analysis, Zheny et al reported sotrovimab treatment was associated with a reduced risk of death or hospitalisation within 28 days of a positive COVID-19 test when compared with molnupiravir, neither that study nor the pre-print study conducted by Patel et al, were designed to compare the effectiveness of treatment to no treatment, in the high-risk cohort. Only one small study limited to solid organ transplant recipients (who are included amongst the high-risk groups eligible for treatment in the UK), compared treatment with sotrovimab, molnupiravir, or nirmatrelvir-ritonavir to no treatment and suggested a 13% absolute reduction in hospital admissions at 30 days (14% vs 27%) amongst those receiving treatment. As in our study, no difference was observed between treatments.

Despite conflicting evidence regarding sotrovimab's possible loss of efficacy against omicron BA.2 and subsequent subvariants, we found no difference between the efficacy of sotrovimab before or during the period when omicron BA.2 was the predominant variant in Wales, suggesting a continued protective effect of sotrovimab against this subvariant. This finding was similar to the exploratory analysis undertaken by Zheny et al, and evidence that sotrovimab is capable of neutralising omicron subvariants BA.2, BA.2.12.1, BA.4 and BA.5 in vitro at concentrations 47-fold lower than the maximum plasma concentration and 10-fold lower than the mean 28-day plasma concentration.²⁹

Policy implications

The most recent iteration of the UK clinical access policy¹² places nirmatrelvir-ritonavir as the first-line treatment option followed by remdesivir and molnupiravir, with sotrovimab now reserved for exceptional cases where antiviral treatments are contraindicated or unsuitable. Contraindications to the use of nirmatrelavir-ritonavir include drug-drug interactions which can lead to serious or life-threatening drug toxicities. There are practical challenges with administration of three-day courses of intravenous remdesivir to non-hospitalised patients; and concerns about the effectiveness of molnupiravir³⁰ and sotrovimab¹⁰ could result in some people at high-risk not receiving treatment. As superiority of one treatment over others was not evident in our results, we argue for continued access to all treatments within the clinical access policy. Our findings support continuation of the UK's policy to target deployment of antiviral and nMAb therapy to those at the highest risk. Results of subgroup analyses suggested only patients with multiple comorbidities had a reduced risk of hospitalisation, which would support further prioritisation of treatment within the highest-risk cohort.

Strengths and weaknesses

The key strengths of this study are its relatively large size, and the completeness of the datasets available within the SAIL databank. Access to the positive PCR or LFD test results for all people in the eligible cohort allowed treatment to be compared to no treatment in similar groups to assess effectiveness of providing treatment rather than between treatments. The concurrent national deployment of molnupiravir and sotrovimab, and subsequently nirmatrelvir-ritonavir, allowed direct comparison between treatments. Finally, the duration of the study allowed a comparison of the effectiveness of sotrovimab before and following the emergence of the omicron BA.2 subvariant.

There are several limitations of the study. Firstly, we cannot discount the possibility of selection bias given the observational design. The 10 groups of high-risk patients are heterogeneous and whilst we controlled for three clinical subgroups and comorbidity, it is plausible that differences between individuals in the treatment and control groups persist. Secondly, because our study was retrospective, patients who received treatment might have been those considered more unwell than those not treated, indeed asymptomatic patients are not eligible for treatment under the current UK clinical access policy. Similarly, the control group did not exclude any patients who were found not to be in one of the 10 high-risk cohorts on clinical screening. However, if less unwell and lower-risk patients were overrepresented in the control group this underestimated treatment benefits in our study. We included all cause rather than COVID-19 related, hospitalisation and deaths within 28 days of a positive COVID-19 test. Thus we have not discounted non-COVID-19 causes of admission which may be more prevalent in the treatment group due to possible differences in the characteristics of people in treatment and non-treatment groups. Nevertheless, we believe this reflects the changing pattern of COVID-19 in the UK where admissions where COVID-19 was the primary cause have declined since early 2022.³¹

Findings in observational studies should be interpreted with caution however we observed a large effect size after adjusting for several potential confounders, which was confirmed by multiple sensitivity analyses, any bias would need to be considerable to completely account for our findings.

Further research

Reducing unplanned admissions to hospital remains a priority for health services in all parts of the UK and there appears to be a significant beneficial effect on admissions from providing treatment to high-risk groups in the community. However, the treatments studied are not inexpensive: treatment courses of sotrovimab and nirmatrelvir-ritonavir have UK list prices of £2209 and £829 respectively³² and whilst the UK price is not publicly available, the US price of a treatment course of molnupiravir has been reported as \$707.³³ The National Institute for Health and Care Excellence (NICE) has plans to publish guidance on the cost-effectiveness of these and other COVID-19 treatments in 2023.³² Given the limited number of real world studies generalisable to the UK, there is a clear need to determine the relative clinical effectiveness and cost-effectiveness of different treatment options taking account of deployment as well as acquisition costs.

Conclusion

This retrospective cohort study of non-hospitalised high-risk patients with COVID-19 suggests that prompt treatment with the oral antiviral medicines molnupiravir or nirmatrelvir-ritonavir, or the nMAb sotrovimab, was associated with a significant reduction in all-cause hospitalisation and death within 28 days of infection immediately before and during a pandemic wave in which the SARS-CoV-2 omicron BA.2 subvariant was dominant. Our findings support the UK deployment approach and the continued use of oral antiviral medicines and sotrovimab in this population, and contribute evidence to the ongoing debate on the real-world effectiveness of sotrovimab.

References

- 1. Department of Health and Social Care [internet]. Government launches COVID-19 Antivirals Taskforce to roll out innovative home treatments this autumn. 2021[cited 2023 Jan 20]. Available from: https://www.gov.uk/government/news/government-launches-covid-19-antivirals-taskforce-to-roll-out-innovative-home-treatments-this-autumn
- 2. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. COMET-ICE Investigators. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. *N Engl J Med*. 2021;385:1941-50.
- 3. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. MOVe-OUT Study Group. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. *N Engl J Med*. 2022;386:509-20.
- 4. Hammond J, Leister-Tebbe H, Gardner A, *et al.* Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. *N Engl J Med.* 2022;386:1397-1408.
- 5. Gottlieb RL, Vaca CE, Paredes R, *et al.* Early remdesivir to prevent progression to severe Covid-19 in outpatients. *N Engl J Med.* 2022;386:305-315.
- 6. Weinreich DM, Sivapalasingam S, Norton T, et al. REGEN-COV antibody combination and outcomes in outpatients with Covid-19. *N Engl J Med* 2021;385(23):e81-e81.
- 7. Cox M, Peacock TP, Harvey WT, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. *Nat Rev Microbiol*. 2022, 1–13.
- 8. Roche [internet]. Ronapreve does not retain neutralising activity against the Omicron variant. 2021 [cited 2023 Jan 20]. Available from: 2021216_roche-statement-on-ronapreve-omicron.pdf
- 9. US Federal Drugs Administration [internet]. Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. 2022 [cited 2023 Jan 20]. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron
- 10. World Health Organisation [internet]. Therapeutics and COVID-19: Living guideline. 2022 [cited 2023 Jan 20]. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2022.5
- 11. Department of Health and Social Care [internet]. Highest-risk patients eligible for new COVID-19 treatments: a guide for patients. 2022 [cited 2023 Jan 20]. Available from: <a href="https://www.gov.uk/government/publications/highest-risk-patients-eligible-for-covid-19-treatments-guide-for-patients/highest-risk-patients-eligible-for-new-covid-19-treatments-a-guide-for-patients
- 12. NHS England [internet]. Interim Clinical Commissioning Policy: Treatments for non-hospitalised patients with COVID-19. 2022 [cited 2023 Jan 20]. Available from: C1710-interim-clinical-commissioning-policy-treatments-for-non-hospitalised-patients-with-covid-19-nov-22.pdf (england.nhs.uk)
- 13. NHS England [internet]. COVID-19 Therapeutics (antivirals, neutralising monoclonal antibodies and interleukin 6 inhibitors). 2022 [cited 2023 Jan 20]. Available from: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-therapeutics-antivirals-and-neutralising-monoclonal-antibodies/

- 14. Welsh Government [internet]. Weekly COVID-19 treatment counts by therapeutic agent in Wales. 2022 [cited 2023 Jan 20]. Available from:

 https://statswales.gov.wales/Catalogue/Health-and-Social-Care/coronavirus-covid-19/covid-19-treatments-by-therapeutic-agent/weeklycovidtreatmentcounts-by-therapeuticagent
- 15. Ford, DV, Jones KH, Verplanke JP, et al. The SAIL databank: Building a national architecture for e-health research and evaluation. *BMC Health Serv. Res.* 2009; 9: 157.
- 16. Jones KH, Ford DV, Jones C, et al. A case study of the Secure Anonymous Information Linkage (SAIL) Gateway: a privacy protecting remote access system for health related research and evaluation. *J Biomed Inform*. 2014; 50(100):196-204.
- 17. Lyons RA, Jones KH, John G, et al. The SAIL databank: linking multiple health and social care datasets. *BMC Medical Informatics and Decision Making* 2009; 9:3.
- 18. Rodgers, SE, Demmler J, Dsilva R, Lyons R. Protecting health data privacy while using residence-based environment and demographic data. *Health Place* 2012;18(2):209-17.
- 19. Rodgers SE, Lyons RA, Dsilva R, et al. Residential Anonymous Linking Fields (RALFs): a novel information infrastructure to study the interaction between the environment and individuals' health. *J Public Health (Oxf)*. 2009;31(4):582-8.
- 20. Welsh Government [internet]. Coronavirus (COVID-19) infection survey (positivity estimates): 27 March to 2 April 2022. 2022 [cited 2023 Jan 20]. Available from: https://www.gov.wales/coronavirus-covid-19-infection-survey-positivity-estimates-27-march-2-april-2022-html
- 21. Welsh Medicines Information Centre. National Antiviral Service Cymru (NAVS) Information for Members of the Public. 2022 [cited 2023 Jan 20]. Available from: https://www.wmic.wales.nhs.uk/navs-cymru/#:~:text=%E2%80%93%20Information%20for%20Members%20of%20the,not%20been%20admitted%20to%20hospital
- 22. Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of Paxlovid in Reducing Severe COVID-19 and Mortality in High Risk Patients [published online ahead of print, 2022 Jun 2]. *Clin Infect Dis.* 2022; ciac443.
- 23. Cheng M, Reyes C, Satram S, et al. Real-world Effectiveness of Sotrovimab for the Early Treatment of COVID-19 During SARS-CoV-2 Delta and Omicron Waves in the United States. [Preprint]. medRxiv 2022.09.07.22279497;
- 24. Piccicacco N, Zeitler K, Ing A, et al. Real-world effectiveness of early remdesivir and sotrovimab in the highest-risk COVID-19 outpatients during the Omicron surge. *J Antimicrob Chemother*. 2022;77(10):2693-2700.
- 25. Butler CC, Hobbs FDR, Gbinigie OA, et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. *Lancet*. 2022; [cited 2023 Jan 20]. Available from: https://doi.org/10.1016/S0140-6736(22)02597-1
- 26. Zheng B, Green ACA, Tazare J, et al. Comparative effectiveness of sotrovimab and molnupiravir for prevention of severe covid-19 outcomes in patients in the community: observational cohort study with the OpenSAFELY platform. *BMJ*. 2022;379:e071932.

- 27. Patel V, Yarwood M, Levick B, et al. Characteristics and outcomes of patients with COVID-19 at high-risk of disease progression receiving sotrovimab, oral antivirals or no treatment in England. [Preprint]. medRxiv 2022 [cited 2023 Jan 20]. Available from: https://doi.org/10.1101/2022.11.28.22282808
- 28. Radcliffe C, Palacios CF, Azar MM, Cohen E, Malinis M. Real-world experience with available, outpatient COVID-19 therapies in solid organ transplant recipients during the omicron surge. *Am J Transplant*. 2022; 22: 2458-2463.
- 29. Wu MY, Carr EJ, Harvey R, *et al.* WHO's Therapeutics and COVID-19 Living Guideline on mAbs needs to be reassessed. *The Lancet*. 2022; [cited 2023 Jan 20]. Available from: https://doi.org/10.1016/S0140-6736(22)01938-9
- 30. Koslov M. Merck's COVID pill loses its lustre: what that means for the pandemic. *Nature*. 2021 [cited 2023 Jan 20]. Available from: https://doi.org/10.1038/d41586-021-03667-0
- 31. Office for National Statistics [internet]. Coronavirus (COVID-19) latest insights: Hospitals. 2023 [cited 2023 Jan 20]. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/hospitals
- 32. The National Institute for Health and Care Excellence [internet]. Draft guidance consultation: Therapeutics for people with COVID-19. 2022 [cited 2023 Jan 20]. Available from: https://www.nice.org.uk/guidance/gid-ta10936/documents/129
- 33. The Institute for Clinical and Economic Review. Report at a glance: COVID-19. 2022 [cited 2023 Jan 20]. Available from: https://icer.org/wp-content/uploads/2022/05/COVID-19-RAAG_10May2022.pdf

Supplementary Table S1: Demographic and clinical characteristics, and event rates by treatment group for individuals with 0, $1, \ge 2$ conditions on the CCI

	0 conditions	ons	1 condition	и	≥ 2 conditions	litions
Characteristic	Treated, $n = 940$	Untreated, $n = 1,850$	Treated, $n = 644$	Untreated, $n = 1,541$	Treated, $n = 456$	Untreated, $n = 1,582$
Sex						
Female	611 (65.0%)	1,029 (55.6%)	402 (62.4%)	879 (57.0%)	233 (51.1%)	758 (47.9%)
Male	329 (35.0%)	821 (44.4%)	242 (37.6%)	662 (43.0%)	223 (48.9%)	824 (52.1%)
Age						
Mean (SD)	47 (14)	47 (16)	55 (15)	58 (16)	62 (15)	69 (15)
Charlson comorbidity index score						
0 - 10	940 (100.0%)	1,850 (100.0%)	514 (79.8%)	1,126 (73.1%)	68 (14.9%)	147 (9.3%)
11 - 20	0 (0.0%)	0 (0.0%)	130 (20.2%)	415 (26.9%)	238 (52.2%)	697 (44.1%)
21 and above	0 (0.0%)	0 (0.0%)	(0.0%)	(0.0%)	150 (32.9%)	738 (46.6%)
Clinical subgroup						
Immunosuppressed Conditions	540 (57.4%)	1,084 (58.6%)	276 (42.9%)	567 (36.8%)	152 (33.3%)	391 (24.7%)
Non-Haemotological Cancers	13 (1.4%)	39 (2.1%)	175 (27.2%)	535 (34.7%)	88 (19.3%)	421 (26.6%)
Other High-Risk Conditions	305 (32.4%)	717 (38.8%)	122 (18.9%)	393 (25.5%)	170 (37.3%)	741 (46.8%)
Unknown	82 (8.7%)	10 (0.5%)	71 (11.0%)	46 (3.0%)	46 (10.1%)	29 (1.8%)
Deprivation						
Most Deprived - 1	117 (12.4%)	350 (18.9%)	98 (15.2%)	277 (18.0%)	85 (18.6%)	344 (21.7%)
2	168 (17.9%)	393 (21.2%)	108 (16.8%)	310 (20.1%)	84 (18.4%)	344 (21.7%)
3	184 (19.6%)	371 (20.1%)	114 (17.7%)	317 (20.6%)	105 (23.0%)	319 (20.2%)
4	211 (22.4%)	369 (19.9%)	146 (22.7%)	280 (18.2%)	93 (20.4%)	301 (19.0%)
Least Deprived - 5	260 (27.7%)	367 (19.8%)	178 (27.6%)	357 (23.2%)	89 (19.5%)	274 (17.3%)
Treatment received						
Molnupiravir	144 (15.3%)	0 (0.0%)	107 (16.6%)	0 (0.0%)	108 (23.7%)	0 (0.0%)
Sotrovimab	447 (47.6%)	0 (0.0%)	347 (53.9%)	0 (0.0%)	285 (62.5%)	0 (0.0%)
Nirmatrelvir/Ritonavir	349 (37.1%)	0 (0.0%)	190 (29.5%)	0 (0.0%)	63 (13.8%)	0 (0.0%)
None	0 (0.0%)	1,850 (100.0%)	0 (0.0%)	1,541 (100.0%)	0 (0.0%)	1,582 (100.0%)
Number of vaccine doses						
0	13 (1.4%)	98 (5.3%)	16 (2.5%)	71 (4.6%)	8 (1.8%)	48 (3.0%)
1 - 3	599 (63.7%)	1,429 (77.2%)	367 (57.0%)	1,178 (76.4%)	297 (65.1%)	1,274 (80.5%)
4 and more	328 (34.9%)	323 (17.5%)	261 (40.5%)	292 (18.9%)	151 (33.1%)	260 (16.4%)
All cause hospitalisation or death within 28 days	22 (2.3%)	58 (3.1%)	31 (4.8%)	140 (9.1%)	31 (6.8%)	346 (21.9%)

Supplementary Table S2: Demographic and clinical characteristics, and event rates by treatment group for each of the study treatments

	Molnupiravir	Sotrovimab	Nirmatrelvir/Ritonavir	Untreated
Characteristic	n = 359	n = 1,079	n = 602	n = 4,973
Sex				
Female	219 (61.0%)	637 (59.0%)	390 (64.8%)	2,666 (53.6%)
Male	140 (39.0%)	442 (41.0%)	212 (35.2%)	2,307 (46.4%)
Age				
Mean (SD)	56 (16)	54 (15)	50 (14)	57 (18)
Number of comorbidities				
0	144 (40.1%)	447 (41.4%)	349 (58.0%)	1,850 (37.2%)
-	107 (29.8%)	347 (32.2%)	190 (31.6%)	1,541 (31.0%)
2 and more	108 (30.1%)	285 (26.4%)	63 (10.5%)	1,582 (31.8%)
Charlson comorbidity index score				
0-10	247 (68.8%)	767 (71.1%)	508 (84.4%)	3,123 (62.8%)
11 - 20	78 (21.7%)	206 (19.1%)	84 (14.0%)	1,112 (22.4%)
21 and above	34 (9.5%)	106 (9.8%)	10 (1.7%)	738 (14.8%)
Clinical subgroup				
Immunosuppressed Conditions	149 (41.5%)	499 (46.2%)	320 (53.2%)	2,042 (41.1%)
Non-Haemotological Cancers	42 (11.7%)	134 (12.4%)	100 (16.6%)	995 (20.0%)
Other High-Risk Conditions	132 (36.8%)	332 (30.8%)	133 (22.1%)	1,851 (37.2%)
Unknown	36 (10.0%)	114 (10.6%)	49 (8.1%)	85 (1.7%)
Deprivation				
Most Deprived - 1	75 (20.9%)	155 (14.4%)	70 (11.6%)	971 (19.5%)
2	65 (18.1%)	197 (18.3%)	98 (16.3%)	1,047 (21.1%)
3	81 (22.6%)	199 (18.4%)	123 (20.4%)	1,007 (20.2%)
4	63 (17.5%)	252 (23.4%)	135 (22.4%)	950 (19.1%)
Least Deprived - 5	75 (20.9%)	276 (25.6%)	176 (29.2%)	998 (20.1%)
Number of vaccine doses				
0	11 (3.1%)	16 (1.5%)	10 (1.7%)	217 (4.4%)
1–3	272 (75.8%)	680 (63.0%)	311 (51.7%)	3,881 (78.0%)
4 and more	76 (21.2%)	383 (35.5%)	281 (46.7%)	875 (17.6%)
All cause hospitalisation or death within 28 days	14 (3.9%)	53 (4.9%)	17 (2.8%)	544 (10.9%)

Supplementary Table S3: Demographic and clinical characteristics, and event rates by treatment group for each of the study treatments

,	Treated before	before 20th February 2022	Treated on or afte	Treated on or after 20th February 2022
Characteristic	Treated, $n = 461$	Untreated, $n = 2,457$	Treated, $n = 618$	Untreated, $n = 2,516$
Sex				
Female	286 (62.0%)	1,320 (53.7%)	351 (56.8%)	1,346 (53.5%)
Male	175 (38.0%)	1,137 (46.3%)	267 (43.2%)	1,170 (46.5%)
Age				
Mean (SD)	51 (14)	56 (18)	56 (16)	59 (18)
Number of co-morbidities				
0	212 (46.0%)	946 (38.5%)	235 (38.0%)	904 (35.9%)
1	146 (31.7%)	747 (30.4%)	201 (32.5%)	794 (31.6%)
2 and more	103 (22.3%)	764 (31.1%)	182 (29.4%)	818 (32.5%)
Charlson comorbidity index score				
0 - 10	346 (75.1%)	1,579 (64.3%)	421 (68.1%)	1,544 (61.4%)
11 - 20	86 (18.7%)	521 (21.2%)	120 (19.4%)	591 (23.5%)
21 and above	29 (6.3%)	357 (14.5%)	77 (12.5%)	381 (15.1%)
Clinical subgroup				
Immunosuppressed Conditions	209 (45.3%)	1,096 (44.6%)	290 (46.9%)	946 (37.6%)
Non-Haemotological Cancers	66 (14.3%)	401 (16.3%)	68 (11.0%)	594 (23.6%)
Other High-Risk Conditions	122 (26.5%)	936 (38.1%)	210 (34.0%)	915 (36.4%)
Unknown	64 (13.9%)	24 (1.0%)	50 (8.1%)	61 (2.4%)
Deprivation				
Most Deprived - 1	79 (17.1%)	518 (21.1%)	76 (12.3%)	453 (18.0%)
2	87 (18.9%)	527 (21.4%)	110 (17.8%)	520 (20.7%)
3	89 (19.3%)	495 (20.1%)	110 (17.8%)	512 (20.3%)
4	93 (20.2%)	437 (17.8%)	159 (25.7%)	513 (20.4%)
Least Deprived - 5	113 (24.5%)	480 (19.5%)	163 (26.4%)	518 (20.6%)
Number of vaccine doses				
0	8 (1.7%)	114 (4.6%)	8 (1.3%)	103 (4.1%)
1 - 3	386 (83.7%)	2,215 (90.2%)	294 (47.6%)	1,666 (66.2%)
4 and more	67 (14.5%)	128 (5.2%)	316 (51.1%)	747 (29.7%)
All cause hospitalisation or death within 28 days	23 (5.0%)	269 (10.9%)	30 (4.9%)	275 (10.9%)

Contributors

All authors were involved in the conceptualisation and design of the study. AE, GJ, AA, CQ, LA and RB contributed to the acquisition of data. CQ, LA and RB carried out the statistical analysis. AE, CQ and LA drafted the original version of the manuscript. All authors contributed to interpretation of the results and critical revision of the manuscript. All authors approved the final manuscript. AE is guarantor for this study. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding

This research was funded by the Wales COVID-19 Evidence Centre, which is funded by Health and Care Research Wales on behalf of the Welsh Government. The funding source had no involvement in data collection, study design, data analysis, interpretation of findings or the decision to publish

Reporting

We used the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) checklist to guide our transparent reporting of our work. A completed STROBE Statement – Checklist of items that should be included in reports of cohort studies is provided

Ethics approval

All research conducted has been completed under the permission and approval of the SAIL independent Information Governance Review Panel (IGRP)

Availability of data

The data used in this study are available in the SAIL Databank at Swansea University, Swansea, UK, but as restrictions apply the are not publicly available. All proposals to use SAIL data are subject to review by an independent Information Governance Review Panel (IGRP). Before any data can be accessed, approval must be given by the IGRP. The IGRP gives careful consideration to each project to ensure proper and appropriate use of SAIL data. When access has been granted, it is gained through a privacy protecting safe haven and remote access system referred to as the SAIL Gateway. SAIL has established an application process to be followed by anyone who would like to access data via SAIL at https://www.saildata-bank.com/application-process.

Acknowledgements

This study makes use of anonymised data held in the Secure Anonymised Information Linkage (SAIL) Databank. This work uses data provided by patients and collected by the NHS as part of their care and support. We would also like to acknowledge all data providers who make anonymised data available for research. We wish to acknowledge the collaborative partnership between SAIL, local health boards and Digital Health and Care Wales that enabled acquisition and access to the de-identified data, and in particular the role of Lydia Herbert, Teena Grenier, Sarah Gage, Emma Williams, Stuart Rees, Jayne Price, Vicky Thomas, Anne Hinchliffe, and Alana Adams in the development of the de-identified individual-level dataset of patients treated with antiviral and nMAb treatments.

Patient and Public Involvement

The IGRP independent guidance and advice on Information Governance policies, procedures and processes for SAIL Databank. The Panel reviews all proposals to use SAIL Databank to ensure that they are appropriate and in the public interest, and it comprises representatives from various organisations and sectors including members of the public